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Abstract. This paper explores the localization of pre-defined seman-
tic object parts, which is much more challenging than traditional object
detection and very important for applications such as face recognition,
HCI and fine-grained object recognition. To address this problem, we
make two critical improvements over the widely used deformable part
model (DPM). The first is that we use appearance based shape regres-
sion to globally estimate the anchor location of each part and then locally
refine each part according to the estimated anchor location under the
constraint of DPM. The DPM with shape regression (SR-DPM) is more
flexible than the traditional DPM by relaxing the fixed anchor location of
each part. It enjoys the efficient dynamic programming inference as tradi-
tional DPM and can be discriminatively trained via a coordinate descent
procedure. The second is that we propose to stack multiple SR-DPMs,
where each layer uses the output of previous SR-DPM as the input to
progressively refine the result. It provides an analogy to deep neural
network while benefiting from hand-crafted feature and model. The pro-
posed methods are applied to human pose estimation, face alignment
and general object part localization tasks and achieve state-of-the-art
performance.

1 Introduction

This paper focuses on localizing object parts from monocular image. For human
and face category, this problem is often named as “human pose esti mation” or
“face alignment”. Accurate part localization serves as the basis of many high
level applications. For example, a recent work [9] shows that directly extracting
features around reliable face parts (landmarks) achieves leading face recognition
performance. As surveyed in [28], human part localization can help with action
recognition and human computer interaction. For general object, reliable part
localization contributes to fine-grained object recognition, as proved in [46,6].
However, this problem is very challenging due to the variations in subject level
(e.g., a human can take many different poses and dresses), category level (e.g.,
adult and baby) and image level (e.g., illumination and cluttered background).
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Human pose estimation and face alignment have been extensively explored for
decades and achieved much progress. The critical issue is how to model the ver-
satile spatial deformation and plausible appearance variation. The seminal work
[21] exploits the pictorial structure (PS) from [23], which uses Gaussian distribu-
tion to capture the deformation of each part and constrain the relative position
of interrelated parts via a tree structure. PS is improved by strong appearance
representation (e.g., [17,25,29,30]), discriminative classifier (e.g., [25,44]) and
powerful structure (e.g., [41,39,42,36,38,40]), and finally it becomes the leading
method in localizing human parts on challenging benchmarks. DPM [20], as one
of the representative works in this category, uses structural SVM training and
HOG feature in pictorial structure for object detection, and it is lately extended
by [44] for human pose estimation.

PS [21] and its widely used extension DPM [20,44] , however, cannot capture
the global information and have limited flexibility, due to the deformation con-
straint by the fixed anchor location. To break the limitation of DPM, we propose
a novel approach by incorporating shape regression into DPM, namely SR-DPM.
Specifically, the shape regression estimates part locations using the appearance
information globally. We set the regressed shape as the anchor locations in DPM
and allow the deformations of parts around them to satisfy the local appearance
consistency. Compared to traditional DPM, SR-DPM is of high degree of free-
dom to model global and local variations sufficiently. Due to the fact that shape
regression and DPM can benefit from each other, we build an objective function
to jointly learn them. It is a non-convex optimization problem, and we design a
coordinate descent procedure to solve it.

In addition, we show that stacking SR-DPMs could further improve the per-
formance. The complex shape variations are often beyond the representation
capacity of single DPM or SR-DPM. To fully explore the data, we propose the
stacked SR-DPM (S-SR-DPM), where each SR-DPM uses the output of previ-
ous SR-DPMs as the input and progressively refines the result. Note that the
SR-DPMs in different layers use different parameters. The S-SR-DPM provides
a natural analogy to deep convolutional neural network (DCNN) in increasing
representation capacity [5]. Compared with the end-to-end learning in DCNN,
the S-SR-DPM takes advantage of well designed hand-crafted pipelines and can
achieve good performance with much fewer training data.

Previous works usually only consider part localization of a special category
(e.g., human and face). In this paper we show wide applications of our method
on human, face and general object. For human pose estimation, we conduct
experiments on challenging LSP [25]. For face alignment, we use the LFPW [4]
as the testbed. It terms of general object, we use the annotations [3] of animals
from Pascal VOC [19]. We compare our method with different state-of-the-art
methods on these three tasks and achieve the leading performance.

The rest of the paper is organized as follows. Section 2 reviews the related
work. The proposed SR-DPM and its stacked form are described in section 3
and section 4. We show experiments in section 5 and finally conclude the paper
in section 6.
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2 Related Work

Many works on human pose estimation are based on pictorial structure in either
generative or discriminative manner. The pictorial structure [21] uses Gaussian
model to capture the deformation of each part and links parts by tree structure.
Inference in pictorial structure is very efficient due to the dynamic program-
ming and distance transform [21]. The pictorial structure is lately exploited in
deformable part model (DPM) [20] with HOG feature and latent-SVM learning,
and it achieves great success in Pascal VOC object detection. [44] extends DPM
for articulated human pose estimation by adding part subtype and using part
annotations in learning. [3] proves the advantage of fully supervised learning of
parts over latent learning in [20] for general objects. [40] shows that automati-
cally learning the tree is better than hand-crafted physical connections. [29] uses
Poselets [7] to capture mid-level cues to latently capture high-order dependen-
cies for pictorial structure. Many recent works improve PS in more part levels,
more global models and more part models [39,42,36,38,26,33,15,31]. A very re-
cent work [30] combines different appearance cues under the pictorial structure
framework and achieves the current leading performance.

Although being similar to human pose estimation problem, face alignment
field often uses very different methods, mainly due to the stronger spatial con-
straint of human face than human body. The most popular models include ac-
tive shape model (ASM [11]), active appearance model (AAM [10]) and their
extensions. Different from the Gaussian deformation of each local part in PS,
ASM/AAM captures the shape deformation globally with PCA constraint. The
global PCA constraint, however, has been indicated to be very sensitive and
is lately extended to be constrained local model (CLM [12,34,4,2]) by a shape
constraint on appearance of local parts. [47] exploits the DPM developed in [44]
for joint face detection and alignment. [45] further improves the work with opti-
mized mixtures and a two-step cascaded deformable shape model. In very recent,
face alignment is taken as a regression problem [8,14,43,37], which directly learns
the mapping the appearance to shape and achieves the leading performance on
face alignment benchmarks and challenges (e.g., 300-W [32]). These methods,
however, are sensitive to initialization, which makes them unsuitable for more
difficult human and object part localization.

We stack multiple SR-DPMs, which is related to a very recent work [35]. In
[35], multiple fisher vector coding layers are stacked to get a similar performance
of deep neural network for image classification task. In [16], boosting is used to
estimate the shape with pose-index feature, where the features are re-computed
at the latest estimation of landmark localization. In [43], linear regression are
stacked for face alignment.

Compared with previous works, the main contributions of this work are sum-
marized as follows:

– We propose SR-DPM to incorporate DPM with shape regression and show
how to jointly learn them. The SR-DPM is much more flexible than DPM
in handling real world object deformation.
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– We stack multiple SR-DPMs to increase the representation capacity, where
each layer progressively refines the part locations. As shown empirically in
experiments, the stacked SR-DPM is critical for better performance.

– To our best knowledge, it is the first work to simultaneously achieve state-of-
the-art performance on human pose estimation, face alignment and general
object part localization.

3 Deformable Part Model with Shape Regression

The DPM is composed of the root filter β0 and some parts. Each part has a
appearance filter βi and deformation term di. Given an object part configuration
specified by S = [x1, y1, · · · , xN , yN ]T and object location (x0, y0), the DPM
favors some special part configurations by:

s(S, I) = βT
0 φa(x0, y0, I) +

N∑

i=1

(βT
i φa(xi, yi, I)− dTi φd(xi, yi, axi , ayi)), (1)

where φa(xi, yi, I) is the HOG feature of the i-th part, and φd(xi, yi, axi , ayi) is
the separable quadratic function to represent the deformation. φd(xi, yi, axi , ayi)
is defined based on the relative location between the (xi, yi) and its anchor loca-
tion (axi , ayi), which is fixed after the specification of (x0, y0). It is straightfor-
ward to add mixture parts [44] or mixture components [20], but we leave them
out to simplify the notation.

For each sliding window in localization, only the root location (x0, y0) is known
in advance and each part location is inferred by maximizing the part appearance
score minus the deformation cost associated with displacement to anchor loca-
tion. Since parts are directly attached to the root, their locations are inferred
independently given the fixed root by:

max
xi,yi

(βT
i φa(xi, yi, I)− dTi φd(xi, yi, axi , ayi)), (2)

where (xi, yi) traverses all possible locations of the part. The procedure can be
efficiently solved by distance transform as used in [21,44].

Our improvement comes from the anchor location of each part. In DPM, the
anchor location of each part is defined according to relative position of either
the root [20] or its parent part [44]. It limits the flexibility since that each part
can only have a small deformation around its fixed anchor location. Additionally,
the star-structure used cannot capture global information, such as the high order
spatial dependencies of left-arm, right-arm, left-leg and right-leg.

In this paper, we propose to use regression to estimate the anchor locations
directly from the image appearance to capture the global information and in-
crease the flexibility. After that we allow each part to have deformation based
on these adaptive anchor part locations under the constraint of DPM. Let us
use Â = [âx1 , ây1 , · · · , âxN , âyN ]

T to specify the estimated anchor part locations.
Suppose the initial shape is A0 and ground-truth shape is A∗, we always want
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that each (xi, yi) to have relationship with all the parts initialized by S0 (which
is the mean shape) to capture the global information. The function can be very
complex, and in this paper we use a simple linear function to approximate it:

Â = f(A0, I) = A0 +WTΦ(A0, I), (3)

where Φ(A0, I) is the local appearance feature extracted around all parts. In this
paper, we define it as the HOG feature [13] from the implementation in [20]. We
concatenate feature vectors of all parts specified by A0 to be a long vector, which
has Nnd values and nd is the length of HOG vector for a part. The dimension
of corresponding regression matrix W is Nnd × 2N . In Eq. 3, each new part
location is estimated based on all the initial part locations, thus Eq. 3 encodes
global information which previously cannot be captured in pictorial structure
based models. No parametric shape prior, such as global shape PCA in ASM
and local part Gaussian deformation in pictorial structure, is assumed in Eq. 3.
It has advantage especially for real world objects, whose spatial deformation can
be very complex and simple parametric prior cannot describe it well.

The above shape regression, however, is not enough for object part localiza-
tion. The reason is that it cannot measure the confidence of the estimated part
locations, which is very important for sliding window based scanning. Addition-
ally, the global shape regression matrix not explicitly consider the appearance
consistency of regressed part location. To this end, we further use the deformable
part model to incorporate shape regression, by replacing the fixed anchor loca-
tion with the shape regression output Â:

s(S, I) = βT
0 φa(x0, y0, I) +

N∑

i=1

(βT
i φa(xi, yi, I)− dTi φd(xi, yi, âxi , âyi)) (4)

where Â = [âx1 , ây1 , · · · , âxN , âyN ]
T = A0 +WTΦ(A0, I).

For each sliding window in localization, we find the S to maximize the confi-
dence score defined above, and take it the the estimated shape configuration of
the sliding window. The deformable part model with shape regression (SR-DPM)
provides the flexibility to capture large variations, but it also brings challenges,
since the regression matrix W and the deformable part model parameter β are
all unknown. In the following part, we present the objective function for joint
learning and show the optimization method.

3.1 Model Learning

The objective function for model learning is motivated by the original DPM used
in object detection, which is defined as:

arg min
β,Sm

1

2
‖β‖2 + C

M∑

m=1

max(0, 1− ym · s(Sm, Im)), (5)

where the first term is used for regularization and the second term is the hinge
loss to punish error in detection. M is the number of training samples, and Sm
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is the part configuration of the m-th image Im. ym = 1 for positive and −1 for
negative. In this function, only the root location of Sm is annotated, and each
part location is inferred according to Eq. 2. The loss function favors the score
of positive sample above 1 and score negative sample below -1. It is a standard
latent SVM problem and has many off-the-shelf solvers, such as the one used
in [20]. One problem in solving is that the negative number is of combinatorial
explosion, and we often use a negative sample mining step to gradually add
negative samples.

In our SR-DPM for object part location, we also want to ensure that the
estimated part configuration specified by Sm matches the ground truth part
configuration specified by S∗

m. In this way, the objective function is extended to
be:

arg min
β,W,Sm

1

2
‖β‖2+C1

M∑

m=1

max(0, 1−ym ·s(Sm, Im))+C2‖W ‖2+C3

Mp∑

m=1

‖Sm−S∗
m‖2,
(6)

where C1, C2 and C3 are used to control the relative weights of different terms.

‖W‖2 is used to regularize the regression matrix W . The last term
∑Mp

m=1 ‖Sm−
S∗
m||2 is used to measure the consistency of estimated shape Sm and ground truth

shape S∗
m. In this function, the Sm is estimated according to the shape regression

model parameterized by W and DPM parameterized by β in Eq. 4. Since only
the shapes of positive samples are of interest, the shape loss is measured only on
positive samples. The above object function provides a way to jointly learn the
deformable part model and shape regression, which can benefit from each other.
However, it also results in a highly non-convex problem, due to the inference
procedure of Sm. We use a coordinate descent procedure to optimize them:

– When the W and Sm are fixed, the function only has the first two terms
and becomes a SVM problem to learn the discriminative parameter β, and
we use the solver from [44].

– When β is fixed, the optimal W is hard to solve directly since that the
HOG transform is non-derivative. Instead, we find an approximation of W
by relaxing the last term. We extensively search to find the part configuration

Ãm, which can converge to a shape closest to ground truth shape S∗
m with

regard to the DPM parameterized by β. Once we have Ãm, the regression
matrix W just needs to ensure that the regressed shape is consistent with

Ãm, so that we can approximately minimizing the term
∑Mp

m=1 ‖Sm − S∗
m‖2

by
∑Mp

m=1 ‖A0
m+WTΦa(A

0
m)−Ãm‖2. We concatenate shape vector Ãm−A0

m
for m ∈ [1,Mp] to be a matrix A and appearance feature vector φ(A0

m, Im)
to be a matrix Φa, where A ∈ R2N×Mp and Φa ∈ RNnd×Mp . Let I be an
identity matrix in RNnd×Nnd , the optimal W in Eq. 6 is approximated by:

W = argmin
Wt

C2‖W ‖2 +C3

Mp∑

m=1

‖A0
m +W TΦa(A

0
m)− Ãm‖2 (7)

= (ΦaΦ
T
a +

C2

C3
I)−1ΦaAT . (8)
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– When W and β are fixed, we can use the standard inference procedure defined in
Eq. 4 to find the optimal Sm.

Implementation Details. In our experience, the above procedure usually con-
verges in 3 loop. To start the loop in learning, we need an initialization of W and
Sm. The W is got by replacing the S̃m in Eq. 7 with S∗

m, and the Sm is initialized
by ground truth S∗

m. In the DPM training step, we always use the parameter got
in last iteration as the “warm start”, which leads to the fast convergence. We
divide training samples into different views. For samples in each view, we align
training shapes using similarity transform to remove the offset and normalize
them into the same scale. After that, we estimate a multi-variate Gaussian dis-
tribution of the shape. For each sliding window in testing, we estimate the scale
and translation of mean distribution, and then use it as the initialization A0.

4 Stacked Deformable Part Model with Shape Regression

In this part, we further improve the part localization performance by stack-
ing the proposed SR-DPM. The intuition comes from recent successes of deep
convolutional neural networks (DCNN) in image classification [27] and object
detection [24]. These works prove the representation capacity advantage of deep
model for real world objects. However, to our best knowledge, no work has shown
the advantage of DCNN for general object part localization, partially due to the
conflict between the large variations and limited training data.

To balance the representation capacity of deep model and limited training
data, we use hand-crafted feature and model for each layer and stack them
to form a deep model. Compared with pure data-driven end-to-end learning,
our method has much fewer parameters and benefits from reliable priors such
as HOG feature and pictorial structure, while still keeps the advantage of rich
representation capacity.

The SR-DPM can be taken as a map g, where the input is an image plus a
shape and the output is a new shape on this image. Since the oracle map g∗

is very complex, there exists an inconsistency between g and g∗. Suppose the
training set is A, then the error on the training set is:

∑

Ai∈A

‖g∗(A0
i , Ii)− g(A0

i , Ii)‖2, (9)

where A0
i is the initial shape of i-th training sample. To further reduce the

training error, we use a series of functions G = {g1, · · · , gK}, where K is number
of functions. We want to approximate g∗ by minimizing:

∑

Ai∈A

‖g∗(A0
i , Ii)− gT ◦ gT−1 ◦ · · · ◦ g1(A0

i , Ii)‖2, (10)

where each gi is a SR-DPM, and it uses the output of gi−1 as the input. Since in
each layer, the function gi is nonlinear, the whole function is highly non-linear
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and has strong representation capacity to approximate the complex map from
image to part locations. We name this model as the stacked SR-DPM (S-SR-
DPM).

SR-DPMs in the S-SR-DPM are learned sequentially. The initial shape A0

and image are taken as the input to train the first function g1 specified by a
SR-DPM on the training set, by the coordinate descent learning described in
the above section. For the following gi, we greedily optimize it by:

gi = argmin
g

∑

Ai∈A

‖g∗(A0
i , Ii)− g(gi−1 ◦ · · · ◦ g1(A0

i , Ii))‖2. (11)

The map number keeps increasing until the training error does not decrease any
more (typically in experiments, a 4 layer S-SR-DPM is enough). In our current
implementation, we only use this layer-wise training procedure because of the
limited computation resource, despite that the global training is possible. We
find that just layer-wise training can significantly improve the performance.

The inference procedure of the S-SR-DPM can be divided into inference of
each single layer SR-DPM, which has a global shape regression step and de-
formable part model step. The procedure is different from traditional iterative
optimization in that in each iteration we use different model parameters. Given
an image, sliding window based scanning is used, where a non-maximal sup-
pression (NMS) is adopted to eliminate overlapping shape configurations and
finally preserve the one with the highest confidence score. We show qualitative
examples of S-SR-DPM inference on face alignment in Fig. 1.

Input: Mean 
Shape and image SR-DPM 1 SR-DPM 2 Output

Fig. 1. Examples of S-SR-DPM inference on face alignment (best viewed in color)

5 Experiments

We conduct experiments on human pose estimation, face alignment and general
object part localization task. We emphasize that our method achieves compet-
itive performance on the three tasks, compared with different state-of-the-art
methods.

5.1 Human Pose Estimation

For human pose estimation, we use the “Leeds Sport Poses” (LSP1) [25] to val-
idate different settings and compare with the state-of-the-art methods. LSP is

1 The dataset is available at http://www.comp.leeds.ac.uk/mat4saj/lsp.html

http://www.comp.leeds.ac.uk/mat4saj/lsp.html
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one of the most challenging datasets for human pose estimation, which includes
1000 sports humans for training and 1000 sports humans for testing. The per-
formance is measured by Percentage of Correctly localized Parts (PCP) [22] on
10 object parts defined according to the 14 joints. 6 subtypes are used for each
part. For all the experiments on LSP, we use the observer-centric annotations as
suggested in [18].

Diagnostic Experiments. We report the mean PCP of 10 parts in different
settings in Fig. 2. For the DPM, we use the code from [44] which is carefully
tuned for human pose estimation. For our methods, we test the SR-DPM with
independent shape regression and DPM learning, the SR-DPM with joint shape
regression and DPM learning, and the S-SR-DPM whose depth is set to be
among 2, 3 and 4. All these methods are trained on the training set of LSP
and use the same 32 dimensional HOG feature from [20]. It can be found that
adding shape regression improves a 1.2% margin over the original DPM. When
the deformable part model and shape regression are jointly trained, we get a
1.9% further improvement. More improvements come from stacking multiple
SR-DPMs to a deeper model. The 2-layer S-SR-DPM gets a 0.8% gain and 3-
layer S-SR-DPM gets a 1.2% gain. In our final implementation, we use the 4-layer
S-SR-DPM. It improves the final PCP performance by 4.5% over DPM and 1.4%
over SR-DPM, which proves the advantage of our S-SR-DPM in capturing large
variations for human pose estimation.

65.2

66.4

68.3

69.1

69.5

69.7

DPM

SR-DPM (independently training)

SR-DPM(jointly training)

D-SR-DPM (depth = 2)

D-SR-DPM (depth = 3)

D-SR-DPM (depth = 4)

Diagnostic Experiments on LSP Human Pose Estimation

Fig. 2. Mean PCP of different settings on LSP

Comparison with State-of-the-Art Methods. We report the PCP of our
methods and the state-the-art methods from recent works in Tab. 1. The “upper
leg”, “lower leg”, “upper arm” and “fore arm” averages the left and right. The
performance of our method is better than [1,44,29,18] and on par with a recent
result from [30]. Note that [30] fuses multiple appearance cues such as special-
ized detector and mid-level Poselet, while our method only uses low-level HOG
for appearance. Our method is better than [30] in localizing parts with large
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deformation, such as fore arm and upper arm, which proves the advantage of
our method in representation capacity. [30] provides powerful appearance cues
and achieves better performance for torso and head. [30] has advantage in ap-
pearance modeling and SR-DPM is better in deformation representation, thus
they can be combined for further improvement.

Table 1. Comparisons on PCP results for human pose estimation on LSP

torso upper leg lower leg upper arm fore arm head mean

Andriluka et al., [1] 80.9 67.1 60.7 46.5 26.4 74.9 55.7
Yang&Ramanan [44] 83.3 72.5 65.6 64.4 41.7 80.4 65.2
Pishchulin et al., [29] 87.5 75.7 68.0 54.2 33.9 78.1 62.9
Pishchulin et al., [30] 88.7 78.8 73.4 61.5 44.9 85.6 69.2
Eichner&Ferrari [18] 86.2 74.3 69.3 56.5 37.4 80.1 64.3

SR-DPM 85.4 75.2 68.8 67.6 45.3 83.6 68.3
S-SR-DPM 85.8 76.8 70.6 69.3 46.9 84.0 69.7

5.2 Face Alignment

For face alignment, we use the Labeled Face Parts in the Wild (LFPW2) from
[4] as the testbed. It contains 29 face landmarks of real world faces with large
appearance variations caused by expression, pose and illumination. Because some
URLs are not available, we only get 811 of the 1132 training images and 224
of the 300 test images in this experiment. We only use a single component for
face and a single subtype for each landmark. The Cumulative Error Distribution
(CED) curve and mean error are used to report the performance. For the CED
curve, we normalize the error by the inter-ocular distance to remove the influence
of face scale.

The experimental comparisons are reported in Fig. 3. We first compare differ-
ent settings of our method. The DPM performance is generated by a face-oriented
DPM extension from [47]. By adding the shape regression, the normalized mean
error has a 18.2% relative decrease. The joint learning of shape regression and
DPM decreases the relative error by 14.5% over the independent learning. The
stacked model is very effective for face alignment, and it has a 26.8% relative
improvement over the single layer SR-DPM, and 48.8% relative improvement
over the DPM.

We also compare our method with the state-of-the-art methods by CED
curves. It can be found that our SR-DPM is already better than the strong
method from [4]. The S-SR-DPM is better than the SDM [43] when the nor-
malized error is below 0.061. Our method has a 0.0298 normalized mean error,
while the SDM is 0.0347. The previous best result is [8], which reports a 0.0343
mean error and is sightly worse than our method. It is worth noting that the
compared methods all needs reliable face bounding box for initialization, while
our method can automatically find the bounding box by sliding window based
scanning.

2 http://homes.cs.washington.edu/$\sim$neeraj/projects/face-parts/

http://homes.cs.washington.edu/$\sim $neeraj/projects/face-parts/
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Fig. 3. Comparisons on LFPW face alignment dataset

5.3 Object Detection and Part Localization

Part localization for general object such as animal is more difficult than human
and face, which is partially reflected by the detection performance on Pascal
VOC. We use the images from Pascal VOC 2007 [19] and the annotation of parts
from [3] 3, which includes “bird”, “cat”, “cow”, “dog”, “horse” and “sheep”.
Since the animals tend to be more flexible than human and face, we use the more
sophisticated clustering techniques introduced in [3], where relative position,
scale, aspect ratio and visibility of parts and the object are used as the feature
for clustering, and finally 4 components are used for each category. We refer to
[3] for the details. For our S-SR-DPM, the layer number is set to be 4, which is
the same as the S-SR-DPM for human pose estimation and face alignment. The
object detection is evaluated first and then the part localization.

Table 2. Average Precision of different methods for animal detection in VOC 2007

Bird Cat Cow Dog Horse Sheep mAP

DPM Ver4 [20] 10.0 19.3 25.2 11.1 56.8 17.8 23.4
DPM Ver5 [20] 10.2 23.0 24.1 12.7 58.1 21.1 24.9
SS-DPM [3] 12.7 26.3 34.6 19.1 62.9 23.6 29.9

Proposed SR-DPM 14.9 27.5 35.7 21.9 64.4 25.5 31.7
Proposed S-SR-DPM 16.7 28.7 36.9 23.5 66.1 27.1 33.2

For object detection, we report the average precision (AP, defined in [19]) of
each category on Pascal VOC 2007. The DPM release44, DPM release5 5 and
strongly supervised DPM (SS-DPM) [3] are used for comparison, as reported
in Tab. 2. The part location information is important for large deformation, as

3 www.csc.kth.se/cvap/DPM/part_sup.html
4 http://cs.brown.edu/$\sim$pff/latent-release4/
5 http://www.cs.berkeley.edu/$\sim$rbg/latent/

www.csc.kth.se/cvap/DPM/part_sup.html
http://cs.brown.edu/$\sim $pff/latent-release4/
http://www.cs.berkeley.edu/$\sim $rbg/latent/
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reflected by the large performance gain over DPM by strong supervised DPM
and our methods. The SS-DPM and our proposed SR-DPM and S-SR-DPM use
exactly the same training images and annotations. The SR-DPM improves SS-
DPM by 1.8% AP and the S-SR-DPM further improves it by 1.5%. We note that
the performance gain is more significant for categories with large deformations,
such as bird and cat, which are the most difficult categories for current DPM
based detection methods.

Table 3. Part Localization performance evaluated on PASCAL VOC 2007 animals.
We report performance PCP of SS-DPM [3], the proposed SR-DPM and S-SR-DPM.

Method Bird Cat Cow Dog Horse Sheep mean per part

SS-DPM[3] 25.4 60.0 36.3 40.5 65.7 29.4 42.9
head SR-DPM 28.2 64.3 37.6 42.4 66.8 32.1 45.2

S-SR-DPM 29.1 64.8 40.4 44.6 68.5 33.1 46.8

SS-DPM[3] - 8.9 25.9 23.1 37.3 17.6 22.6
frontal legs SR-DPM - 12.4 29.3 27.3 38.4 19.6 25.4

S-SR-DPM - 13.7 31.4 28.1 41.2 21.6 27.2

SS-DPM[3] 12.1 - 37.1 - 39.3 10.9 24.9
fore legs SR-DPM 14.4 - 39.1 - 42.7 12.5 27.2

S-SR-DPM 17.9 - 41.2 - 44.5 14.6 29.3

SS-DPM[3] - 17.2 58.2 6.7 57.7 57.1 39.4
torso/back SR-DPM - 20.7 63.1 10.6 59.7 60.3 42.9

S-SR-DPM - 21.3 63.4 11.4 61.2 61.1 43.7

SS-DPM[3] 6.1 1.7 - 0.9 32.0 2.4 8.6
tail SR-DPM 10.2 4.2 - 5.9 35.0 5.7 12.2

S-SR-DPM 11.1 6.7 - 5.4 36.1 5.3 12.9

SS-DPM[3] 14.5 22.0 39.4 17.8 46.4 23.5 -
mean per SR-DPM 17.0 25.4 42.3 21.6 48.5 26.0 -
category S-SR-DPM 19.0 26.6 44.1 22.1 50.3 27.1 -

For part localization, we again use the PCP criterion [22], and compare our
method with [3], which is the only available result on this setting. We report the
PCP of each part in each category and mean PCP of strongly supervised DPM
(SS-DPM), SR-DPM and S-SR-DPM in Tab. 3. By incorporating shape regres-
sion into deformation part model, while using exactly the same training data
and parameter setting with SS-DPM, the proposed SR-DPM achieves a mean
per part PCP improvement from 2.3% to 4.6% and a mean per category PCP
improvement from 2.1% to 3.8%. When stacked model is used, S-SR-DPM fur-
ther improves the mean per part/category PCP from 0.7%/0.5% to 1.8%/2.0%.
Similar to the observations on object detection, our method has noticeably im-
provements for categories with large deformations such as bird, cat and dog. We
show some qualitative results in Fig. 4.
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Fig. 4. Qualitative results of S-SR-DPM for human pose estimation, face alignment
and object part localization(best viewed in color)
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6 Conclusion

In this paper, we propose two critical improvements over deformable part model
to localize object parts from a single image. The first is that we extend DPM
to SR-DPM, which exploits the shape regression to capture global information
and provides flexible anchor locations. After that, we use the deformable part
model to refine the result according to the anchor locations and measure the
confidence score. We show how to learn the shape regression and DPM jointly
by a coordinate descent procedure. The second improvement is that we prove
stacked SR-DPM (S-SR-DPM) increases the representation capacity and leads
to better localization performance. We show the advantages of SR-DPM and S-
SR-DPM for human pose estimation, face alignment and object part localization,
which are usually taken as three different problems.

Acknowledgement. This work was supported by the Chinese National
Natural Science Foundation Projects #61105023, #61103156, #61105037,
#61203267, #61375037, National Science and Technology Support Program
Project #2013BAK02B01, Chinese Academy of Sciences Project No. KGZD-
EW-102-2, and AuthenMetric R&D Funds.

References

1. Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detection
and articulated pose estimation. In: CVPR. IEEE (2009)

2. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Robust discriminative response
map fitting with constrained local models. In: CVPR. IEEE (2013)

3. Azizpour, H., Laptev, I.: Object detection using strongly-supervised deformable
part models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C.
(eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 836–849. Springer, Heidelberg
(2012)

4. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of
faces using a consensus of exemplars. In: CVPR. IEEE (2011)

5. Bengio, Y.: Learning deep architectures for ai. Foundations and trends R© in Ma-
chine Learning (2009)

6. Berg, T., Belhumeur, P.N.: Poof: Part-based one-vs.-one features for fine-grained
categorization, face verification, and attribute estimation. In: CVPR. IEEE (2013)

7. Bourdev, L., Maji, S., Brox, T., Malik, J.: Detecting people using mutually consis-
tent poselet activations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part VI. LNCS, vol. 6316, pp. 168–181. Springer, Heidelberg (2010)

8. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression.
In: CVPR. IEEE (2012)

9. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: High-dimensional
feature and its efficient compression for face verification. In: CVPR. IEEE (2013)

10. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. PAMI (2001)

11. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their
training and application. CVIU (1995)



582 J. Yan et al.

12. Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local
models. Pattern Recognition (2008)

13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. IEEE (2005)

14. Dantone, M., Gall, J., Fanelli, G., Van Gool, L.: Real-time facial feature detection
using conditional regression forests. In: CVPR. IEEE (2012)

15. Desai, C., Ramanan, D.: Detecting actions, poses, and objects with relational
phraselets. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.)
ECCV 2012, Part IV. LNCS, vol. 7575, pp. 158–172. Springer, Heidelberg (2012)

16. Dollár, P., Welinder, P., Perona, P.: Cascaded pose regression. In: CVPR. IEEE
(2010)

17. Eichner, M., Ferrari, V.: Better appearance models for pictorial structures (2009)
18. Eichner, M., Ferrari, V.: Appearance sharing for collective human pose estimation.

In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS,
vol. 7724, pp. 138–151. Springer, Heidelberg (2013)

19. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. IJCV pp. 303–338 (2010)

20. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. PAMI (2010)

21. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition.
IJCV (2005)

22. Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction
for human pose estimation. In: CVPR. IEEE (2008)

23. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial
structures. IEEE Transactions on Computers (1973)

24. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. arXiv preprint (2013)

25. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for
human pose estimation. In: BMVC (2010)

26. Johnson, S., Everingham, M.: Learning effective human pose estimation from in-
accurate annotation. In: CVPR. IEEE (2011)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)
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